16 Considerazioni su "Semplificazione nelle previsioni statistiche semplici (colonna 473)"

  1. Nel contesto dell'argomento di Bibi, l'argomento presuppone che ci sia un massimo, quando è del tutto possibile (e anche probabile) che ce ne siano diversi affascinanti, e quindi almeno un minimo. In pratica l'argomento è di scarsa utilità, quello che l'argomento dice è che esiste un'aliquota fiscale ottimale (in termini di entrate statali), argomento piuttosto banale. La domanda importante è quale sia quella percentuale ottimale, che probabilmente può variare da un'economia all'altra e con la situazione macroeconomica.
    In breve, meno informazioni contiene il modello (presupposti corretti sulla realtà) meno utile è.

    1. Questa è la critica più debole. Nemmeno del tutto vero, perché è molto probabile che abbia un solo massimo, e in ogni campo almeno dimostra che non necessariamente un aumento delle tasse fa aumentare le entrate. Questo è l'argomento principale.
      Inoltre, non sono d'accordo sul fatto che una piccola informazione sia meno utile. Anche qui c'è un processo più complesso che ha un ottimo.

  2. Non ho ancora esaminato, ma un'osservazione ha attirato la mia attenzione. Hai scritto che secondo te quando non ci sono informazioni sul processo di distribuzione è impossibile anche parlare di probabilità. Parlando di ciò che hai menzionato alla fine per i paralleli alle discussioni su Gd e creazionismo, sul tema della dimostrazione dell'unicità del sistema legale ho pensato che tu affermassi che l'unicità può essere rivendicata senza alcuna informazione sul processo di distribuzione. Qual è la differenza?

    1. Quando il processo non ci è affatto noto ma c'è qualche processo lì, non ha senso presumere che la distribuzione sia uniforme. Come ho commentato, questo è al massimo un valore predefinito su cui non costruirei molto. Ma nella visione teologica fisiologica c'è un presupposto che la formazione del mondo sia un caso completo dal nulla assoluto (altrimenti la domanda rimarrà ciò che ha creato ciò che era prima). In una situazione del genere si assume che la distribuzione uniforme sia la più ragionevole e logica. Una distribuzione irregolare ha bisogno di una ragione. Nella lotteria delle anime, che sia fatta da Dio o da un altro meccanismo c'è una ragione, e bisogna conoscere questa ragione per dirne qualcosa.

      1. Sono complicato ma cercherò di brancolare un po' di più. È difficile per me vedere la distinzione tra una distribuzione uniforme e una distribuzione irregolare, ma lascio così (perché è un'idea su cui riflettere) e chiedo altrimenti - una distribuzione apparentemente uniforme (adatta per considerazioni di simmetria) è molto più speciale di una distribuzione non uniforme.
        Inoltre, e spero di non sbagliarmi e dirompente, a quanto pare in materia di gran parte dei divieti ci sono anche meccanismi per l'hardware.

        1. Esattamente. Si presume pertanto una distribuzione uniforme in assenza di altre informazioni. È il più semplice e simmetrico.
          Per quanto riguarda l'halakhah nei divieti, ogni caso a sé stante. Ma lì si va non solo dopo la considerazione statistica, ma anche dopo le regole giuridico-halakhiche (ad esempio, la ricerca della semplicità. Esistono principi metagiuridici che influenzano, ecc.).

            1. Non grigliamo le distribuzioni. La distribuzione controlla la lotteria. La distribuzione uniforme è la più semplice e quindi assunta. Così come cucire i punti su una linea retta è meglio che cucirli lungo un seno, anche se si può dire che la linea retta è la più semplice e quindi la più speciale.

              1. Apparentemente da un punto in cui sei arrivato in linea retta piuttosto perché vedi che c'è una linea semplice e speciale che cuce approssimativamente quello che è allora, quindi è probabile che questa non sia una coincidenza. Ma non possiamo presumere in primo luogo che un particolare fenomeno cadrà su una linea retta senza alcun ancoraggio. Capisco che stai dicendo che le considerazioni sulla semplicità sono completamente a priori, ma come lo mostra la linea.
                (Ho riflettuto prima del commento precedente sulla lotteria di distribuzione e non l'ho capito e mi chiedo ancora)

                1. Non ho ben capito di cosa tratta la discussione. Non sei d'accordo sul fatto che in assenza di altre informazioni sia probabile una distribuzione uniforme? Perché fare la differenza tra i risultati? Se non si conoscono le differenze tra i risultati nello spazio campionario è molto probabile che abbiano tutti lo stesso peso. Non so cosa aggiungere.

                  1. Ma lei è del parere che anche in assenza di informazioni sia improbabile una distribuzione uniforme nelle anime. E hai spiegato che è perché c'è un processo sconosciuto, e solo nell'emergere dell'incompiuto si suppone che i sistemi di leggi emergano in una distribuzione uniforme e quindi l'unicità del sistema ha la prova della creazione.
                    Non ho ancora una solida opinione, e forse c'è una differenza tra prima degli eventi (che se si calcola l'aspettativa si dovrebbe probabilmente assumere una distribuzione uniforme) e dopo che è accaduto (allora è molto difficile presumere devotamente che dovrebbe sono avvenuti in una distribuzione uniforme). E MM nel tuo metodo ho chiesto e se esausto esausto.

                    1. Esattamente. E ho spiegato la divisione. Nel processo i casi di distribuzione sono uniformi. Nel processo di selezione non c'è motivo di presumere proprio questo. E ho aggiunto che forse questo è ciò che suppongo senza informazioni, ma non ci costruirei nulla.
                      Mi sembra che ci siamo esauriti.

                    2. Puoi chiarirmi se ho capito correttamente che nel provare dal nulla (supponendo che sia possibile, per motivi di prova, il Petah Tikva indipendente dalla cosmologia) affermi positivamente che ci sarà una distribuzione uniforme (e questo è un richiesta critica di prova), non solo un'ipotesi di mancanza di conoscenza.

  3. Se il presupposto è che non siamo speciali, non importa affatto se ciò che ci accade accade per la prima volta o di recente, con una probabilità del 50% o una probabilità di 1 per trilione, secondo regole statistiche o contrarie a loro. Tutti questi non cambiano affatto. Dopotutto, non siamo speciali.

    Quindi tutta questa discussione non è necessaria.

lascia un commento